Weighted Poincaré and Korn Inequalities for Hölder Α Domains

نویسندگان

  • GABRIEL ACOSTA
  • RICARDO G. DURÁN
چکیده

It is known that the classic Korn inequality is not valid for Hölder α domains. In this paper we prove a family of weaker inequalities for this kind of domains, replacing the standard L-norms by weighted norms where the weights are powers of the distance to the boundary. In order to obtain these results we prove first some weighted Poincaré inequalities and then, generalizing an argument of Kondratiev and Oleinik, we show that weighted Korn inequalities can be derived from them. The Poincaré type inequalities proved here improve previously known results. We show by means of examples that our results are optimal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solutions of the Divergence and Korn Inequalities on Domains with an External Cusp

This paper deals with solutions of the divergence for domains with external cusps. It is known that the classic results in standard Sobolev spaces, which are basic in the variational analysis of the Stokes equations, are not valid for this class of domains. For some bounded domains Ω ⊂ R presenting power type cusps of integer dimension m ≤ n−2, we prove the existence of solutions of the equatio...

متن کامل

Some weighted operator geometric mean inequalities

In this paper, using the extended Holder- -McCarthy inequality, several inequalities involving the α-weighted geometric mean (0<α<1) of two positive operators are established. In particular, it is proved that if A,B,X,Y∈B(H) such that A and B are two positive invertible operators, then for all r ≥1, ‖X^* (A⋕_α B)Y‖^r≤‖〖(X〗^* AX)^r ‖^((1-α)/2) ‖〖(Y〗^* AY)^r ‖^((1-α)/2) ‖〖(X〗^* BX)^r ‖^(α/2) ‖〖(Y...

متن کامل

On weighted isoperimetric and Poincaré-type inequalities

Weighted isoperimetric and Poincaré-type inequalities are studied for κ-concave probability measures (in the hierarchy of convex measures).

متن کامل

Divergence operator and Poincaré inequalities on arbitrary bounded domains

Let Ω be an arbitrary bounded domain of Rn. We study the right invertibility of the divergence on Ω in weighted Lebesgue and Sobolev spaces on Ω, and relate this invertibility to a geometric characterization of Ω and to weighted Poincaré inequalities on Ω. We recover, in particular, well-known results on the right invertibility of the divergence in Sobolev spaces when Ω is Lipschitz or, more ge...

متن کامل

The Uniform Korn - Poincaré Inequality in Thin Domains L’inégalité De Korn - Poincaré Dans Les Domaines Minces

We study the Korn-Poincaré inequality: ‖u‖W1,2(Sh) ≤ Ch‖D(u)‖L2(Sh), in domains S that are shells of small thickness of order h, around an arbitrary compact, boundaryless and smooth hypersurface S in R. By D(u) we denote the symmetric part of the gradient ∇u, and we assume the tangential boundary conditions: u · ~n = 0 on ∂S. We prove that Ch remains uniformly bounded as h→ 0, for vector fields...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008